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Abstract
The Bio-Encyclopedia at the Biodefense Knowledge Center (BKC) is being constructed to allow an early detection 
of emerging biological threats to homeland security. It requires highly structured information extracted from variety 
of data sources. However, the quantity of new and vital information available from every day sources cannot be 
assimilated by hand, and therefore reliable high-throughput information extraction techniques are much anticipated. 
In support of the BKC, Lawrence Livermore National Laboratory and Oak Ridge National Laboratory, together with 
the University of Utah, are developing an information extraction system built around the bioterrorism domain. This 
paper reports two important pieces of our effort integrated in the system: key phrase extraction and semantic tagging. 
Whereas two key phrase extraction technologies developed during the course of project help identify relevant texts, 
our state-of-the-art semantic tagging system can pinpoint phrases related to emerging biological threats. Also we are 
enhancing and tailoring the Bio-Encyclopedia by augmenting semantic dictionaries and extracting details of 
important events, such as suspected disease outbreaks. Some of these technologies have already been applied to large 
corpora of free text sources vital to the BKC mission, including ProMED-mail, PubMed abstracts, and the DHS's 
Information Analysis and Infrastructure Protection (IAIP) news clippings. In order to address the challenges involved 
in incorporating such large amounts of unstructured text, the overall system is focused on precise extraction of the 
most relevant information for inclusion in the BKC. 

1. Introduction
The Bio-Encyclopedia (Bio-E) at the Biodefense Knowledge Center (BKC) [4, 5] is aimed to 
detect and prevent potential biological threats in the earliest time. By collecting and compiling a 
huge stack of related information, it will serve various government agencies to query potential 
bioterrorism and all related resources. In the end, it will be constructed as an elaborate knowledge 
base that allows effective and timely response to various biological terrorisms. In order to 
effectively perform its role, the center must incorporate as much relevant information as possible. 
Also much attention should be paid to ensure the quality of information stored therein. 

The underlying data model in the BKC is a semantic graph where concepts are represented as 
nodes and the relationships between them are denoted as edges. A semantic graph is a powerful 
data model that permits advanced techniques for uncovering hidden relationships in the data. The 
information incorporated in the Bio-E is thus very structured. However, much of the information 
sources are in unstructured text format. For this reason, it is imperative to perform systematic 
analysis on source documents to extract valuable information in well structured format. More 
specifically, relevant information from unstructured text should be accurately identified so that it 
can be perpetuated up to the level of the graph.

The quantities of relevant texts are growing so fast, thus in the near future the amount of data 
processed daily for the BKC will be beyond the capacity of human curators. In such a context, 
assimilating free-text data at the level required by the semantic-graph model presents many 
challenges, and available technologies are inadequate for many requirements within the 
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bioterrorism domain. Our effort in this direction embraces identification of relevant text entity in 
two levels: document and phrase. To identify the most relevant documents from a vast volume of 
corpus, we developed two keywords (or key phrases) extraction methods. To sift information in 
more detailed form, we developed semantic tagging methods that pinpoint phrases that are most 
pertinent to the concept under consideration. 

This paper provides an overview of our initial effort performed in support of BKC’s long-
reaching goal. It describes our motivation, methodologies, and the results obtained from our 
empirical studies. In the first half of the paper, we describe two keyphrase-extraction 
methodologies, both corpus-based and single-document, which were designed to handle the free-
text sources originally identified for inclusion in the BKC.  In the latter half of the paper, we 
describe initial methodologies and preliminary results for applying semantic tags to terms and 
phrases belonging to semantic categories pertinent to the BKC mission.

2. Keyword Extraction from Both Domain Dependent and Independent Documents

Keywords extraction is a process of selecting a set of words (or phrases) that deliver concise and 
high-level description of a document. The importance of keyword extraction coincides with the 
increased need for instant understanding and handling of huge volume of documents for various 
purposes. The quality of the extracted keywords affects information retrieval processes like text 
clustering, classification, automatic text summarization, etc. Algorithms for keyword extraction 
can be classified into two broad categories: corpus dependent and independent approaches. While 
the former requires a large stack of documents and predetermined keywords to build a prediction 
model, the latter directly sifts keywords from a document without any previous or background 
information. Generally it is accepted that corpus dependent approaches yield better performance. 
However, a prediction model is practically restricted to a single domain, thus the quality of 
extracted keywords from a new document of unknown domain is not always guaranteed. In this 
regard, corpus independent (or domain independent) approaches may find many practical 
applications.

Document preprocessing is an important step in most information retrieval processes. It 
transforms documents in such a way the most essential information is readily available.  In 
keyword extraction, it involves (1) selection of candidate phrases and (2) merge of candidate 
phrases for the final analysis. It has been reported that a successful preprocessing can improve the 
performance by 15-20%. In particular, we empirically verified that the most appropriate 
preprocessing steps can have a significant impact on the final results. In this section, we introduce 
two keyword extraction algorithms, domain dependent and domain independent, respectively that 
we developed for the BKC project. Also we describe various document preprocessing efforts 
applied during the course of the project.

2.1. Document Preprocessing
Our document preprocessing process includes three techniques to produce a suitable selection of 
candidate key phrases: stemming, stop word removal, and candidate phrase selection. These 
techniques help obtain unbiased frequency counting of each word in documents. 
l Stemming: Morphological variants of the words could be considered semantically 

equivalent for information retrieval purposes. Studies have shown that there is a strong 
correlation between the performance of stemming and Information Retrieval. Hence the 



choice of stemmer can have far reaching effects on the quality of extracted key phrases. 
In practice, it is a process of collapsing words of the same root into a representative form 
by truncating suffixes and training numbers. We particularly used Iterative Lovins 
stemmer [7]. 

l Stop word removal: A word that does not carry any unique information about a 
document needs to be removed from candidate keywords. We filtered out such a word 
using a list of 650 commonly occurring stop words compiled from several text 
processing literature and SMART system [8]. 

l Candidate phrase selection: There are several methods that can be utilized for choosing 
the phrases that can be considered as coherent units, and hence potential key phrases. 
Utilizing n-grams alone can lead to incoherent phrases being output. In addition, 
inserting these incoherent phrases into the candidate set can negatively impact the 
scoring of other terms. This problem can be eased by requiring that an n-gram occurs a 
sufficient number of times together. To ensure that other coherent phrases are neglected, 
n-grams are formed by grouping n consecutive words in a given sentence. These n-grams 
are then filtered if they either start or end in a stop word. We selected up to 4 grams as 
candidate key phrases as input to the key phrase extraction algorithms. 

2.2. Keyword Extraction Methods
Our implementations of keyword extraction are both based on Term Frequency (TF) of word in a 
document. For the corpus dependent approach, we further include Inverse Document Frequency 
(IDF) and Bayesian framework to build a prediction model. For the corpus independent (or 
domain independent) approach, we exploit statistical unusualness of certain words in terms of 
their co-occurring frequency patterns with frequent words in a document. 

Our corpus dependent method basically implements naïve Bayes classifier, i.e.
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document under consideration, respectively. A TF-IDF of candidate i is defined as, 
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Ntf × , where tfi,j, dfi, and N denote term frequency of i in document j, the number of 

documents containing i, and the total number of documents in the corpus, respectively. We also 
consider the relevancy of a candidate key phrase with respect to a predefined domain specific 
dictionary, which we represent as a probability. Our final corpus dependent model is then 
constructed by adding the relevancy term to (1).

Our corpus independent (or domain independent) method utilizes a measure of co-occurrence 
with frequently occurring words as found in [9, 10]. More specifically, a distribution of co-
occurrence frequencies is converted to a chi-square value which essentially denotes the degree of 
importance. Formally, the chi-square value of a candidate term w is computed as,
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where G denotes a set of frequent terms, nw is the total number of co-occurrences of w with all 
the terms in G, and pg represents the expected occurrence probability of a frequent term g in G.  

We note that Chi-square estimation using (2) can be highly unreliable if G includes many terms 
that are semantically equivalent. To make the estimation more robust, we merged frequent terms 
by performing hierarchical clustering. Determination of the cut-off value in the dendogram is 
crucial, yet difficult task. Indeed our preliminary analysis revealed that the quality of the 
extracted keywords heavily depends on the carefully chosen cut-off values. To eliminate any 
spurious errors caused by improper choices, we averaged chi-square values measured from 
different clustering results. 

Chi-square values can be compared only when they are computed from the same documents. 
There are, however, cases when comparisons between chi-square values from different 
documents are desirable. For example, we often need to choose the documents that are more 
relevant to the underlying topic from a large stack of corpus. For this reason, our corpus 
independent keyword extraction method transforms a chi-square value to z-scale following the 
method developed by Wilson & Hilferty [11] . More technically, the transformation is defined as:
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where d denotes the degrees of freedom. 

3. Semantic Tagging
Over the last few years there has been a rapid growth in the availability of biomedical literature. 
Significant amount of valuable scientific information is hidden in these resources. Automatic 
information extraction is the first step towards extraction of relevant knowledge from these 
sources. Along the line of our effort to the BKC, we applied semantic tagging techniques to 
identify relevant terms in categories of our interest.



Semantic tagging, which is often referred to as named-entity recognition (NER), is the process of 
extracting proper names and classifying them into a set of predefined categories. Semantic 
tagging provides an added value to the process of information extraction by facilitating the 
discovery of structure in unstructured data. It is the foundation for building more complex 
information extraction processes which help build ontological information, event tracking and 
scenario. Many semantic categories contain polysemous terms, causing dictionary-based 
semantic tagging to be error-prone. Also some categories contain a wide variety of phrases, 
which makes construction of a comprehensive dictionary nearly impossible. In addition, new 
terms of a category can always arise, and we need to classify them as well. For example, we 
would like to be able to tag a new emerging disease as such, despite not having the term or phrase 
in a gazetteer.

Our current research is focused on NER of categories like disease, bacterium, protein, etc. which 
are of interest to the BKC. Due to the lapse in standard nomenclature, many terms in these 
categories have multiple names, abbreviations are common, and often exact phrase boundaries 
are not clearly defined. We found that there exists no NER tool for disease and bacterium, 
whereas there exist several tools for protein. Thus, we developed Conditional Random Field 
(CRF)-based tagger for disease and bacterium. For protein, we combine the outputs of existing 
tools into a single framework.

3.1 Named Entity Recognition for disease and bacterium using Linear Chain CRF Model
With the absence of existing tools for tagging disease and bacterium, we found Conditional 
Random Field (CRF) to be an appropriate choice. CRFs are discriminative/conditional 
probabilistic models that maximize conditional probability P(s|o) of label sequence s for a given 
particular observation sequence o. When the real data distribution has higher order dependencies, 
CRFs have been shown to outperform other labeling and segmenting methods, such as Hidden 
Markov Models (HMMs) and Maximum Entropy Markov Models (MEMMs) [12, 13]. CRFs 
have several advantages over other labeling techniques as they relax the strong independence 
assumptions required by HMMs and avoid the label biasing problem in MEMMs. Moreover, 
convex nature of CRF loss function (log-likelihood) guarantees convergence of global optimum 
when estimating CRF parameters. They generalize easily to analogues of stochastic context free 
grammars which are useful in Natural Language Processing. 

Our NER for bacterium and disease is modeled after the linear chain CRF model (See Figure 2). 
We particularly follow the structure described in [12], and utilize feature set described in  [14]. 
Here a feature stands for a constraint over a set of states in a CRF. We consider the following 
features to properly model the NER for bacterium and disease.
l Semantic Features: Semantic domain knowledge in the form of lexicons is used for 

features. We manually prepared 4 lexicons for this purpose (Known Genus Names for 
Bacteria, Words resembling Species names, Known Diseases, Disease Indicating Words). 
These were compiled from different online resources based on the recommendations 
from domain experts.

l Orthographic Features: Several orthographic features are also considered. They are 
based on regular expressions that describe words ending with a particular substring, 
alphanumeric, punctuations etc. as well as suffixes and prefixes indicating a particular 



feature. Apart from these features, words observed in training data are also used as a 
feature set.

l Other Features: Semantic structure of the entity could also serve as a feature set. For 
example, in Bacterium, Species should always be preceded by Genus label in the model. 
These features put additional constraints and help improve the performance of the overall 
recognition system.

Each state in our CRF model corresponds to a sub-entity. A series of one or more sub-entities 
forms a named entity. More specifically, we define three entities as follows.

Bacterium = {Genus Full Name (FN), Genus Short Name (SN), Species}
Disease = {Begin Disease (BD), Middle Disease (MD), End Disease (ED), Single Disease (SD)}
Other = {Set of all other words}

Our linear-chain CRF model produces semantic tagging for bacterium and disease by identifying 
the most probable state sequences given a series of observed words (i.e. a sentence). Let S be a 
set of states (e.g. Single Disease, Genus, Species etc.). Let s = <s1, s2,…,sn> be the sequence of 
states in S. Let o = <o1, o2,…,on> be a sequence of observed words of length n. Our linear-chain 
CRF model computes the conditional probability of a state sequence s, given the observed input 
sequence o. Technically, this is defined as:
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Figure 2: Intuitive integrated NER model for Bacteria and Disease



in the sequence, si-1 is the originating state, and si is the destination state. Zo is a normalization 
factor, and λk is the weight associated with fk (si−1,si,o,i). Weights are determined to maximize the 
log-likelihood of state sequences in the training data. Training is performed via a quasi-Newton 
non-linear optimization routine, known as L-BFGS (Limited-memory BFGS). 

3.2 Named Entity Recognition for proteins using Predictive Data Mining Techniques
Protein names are one of the most complicated entities to be extracted from unstructured text. It 
is primarily due to the fact that protein names contain Roman letters, digits, abbreviations, other 
symbols and unknown words. These names resemble species names, chemical names, mineral, 
and general English words. Furthermore these names are subject to orthographic variations 
originating from the differences in capitalization and hyphenation, multi-word formation etc.  
Hence it is not possible to extract all protein names from a document with high precision rate 
using a single methodology. Moreover from a performance evaluation of the individual predictors 
on un-seen data, it is observed that the overlap between the regions of predictions is considerably 
small. To achieve higher precision rate by utilizing overlapped and non-overlapped regions in 
predictions, we choose to combine individual predictions using predictive data mining 
techniques.
More specifically, we exploit the existing state of the art technologies in protein Named Entity 
Recognition, combine them using ensemble techniques, and produce a significantly improved 
precision rate.

We used two different predictive ensemble techniques: voting and meta-learning[15, 16]. Both 
techniques are based on merging predictions of base classifier (or predictors). Whereas voting 
simply takes majority predictions, meta-learning produces another classifier, which is called 
meta-classifier, based on predictions of base classifiers. The final classification is obtained from 
the meta-classifier which takes in base predictions as an input. In the current work, we considered 
5 different base classifiers that are based on Conditional Random Field (CRF), Support Vector 
Machine (SVM), statistical model, and rule-based system.

4. Evaluation of Keyword Extraction and Semantic Tagging Methods
This section reports the result of our performance evaluation for both keyword extraction and 
semantic tagging methods.  

4.1. Empirical Evaluation of Keyword Extraction Methods
For the evaluation of our two keyword extraction methods, we selected 20 documents; 6 from 
Aliweb, 6 journal papers and 8 documents from CSTR collection. The Aliweb corpus is a 
collection of HTML web pages gathered by Turney through Aliweb search engine for his study 
[17, 18]. CSTR is a collection of Computer Science research papers which were included as part 
of the New Zealand Digital Library (http://www.nzdl.org). 

The performances of two keyword extraction methods (represented in bold italic font in Table 1) 
are compared with other four existing methods (See Table 1 for details). For each document, six 
sets of key phrases are retrieved, one from author assigned list that came with the data set, and 
the other five from each method. We limit the number of key phrases from each document to 15. 
In case a method produces n << 15 key phrases and it is the minimum of all methods, we only 
select n key phrases from all other methods. Each document and its six key phrase sets were 



presented to human evaluators. An evaluator was asked to assign relevancy score to each key 
phrase set. More specifically, within a scale of 0 to 10 (the higher the better), the evaluators are 
asked to:

l Evaluate how an individual key phrase is relevant to the given document.
l Evaluate how the key phrase set as a whole covers the topics in the document.

Then, five methods and author assigned key phrases are ranked based on the scores given by the 
evaluator. Then the ranks are averaged over all the evaluators. As demonstrated in the Table 1, 
our corpus dependent method show the best (next to author assigned list) performance, and the 
other corpus independent also demonstrates a competitive result. 

4.2 Empirical Evaluation of Named Entity Recognition
We used two separate document sets to evaluate the performances of NER model for disease and 
bacterium, and protein. For disease, we used 250 ProMED mails as training corpus, and 100 
separate ProMED mails as validation corpus. For bacterium, we used 100 and 47 ProMED mails 
for training and testing corpus, respectively. The results are illustrated in Table 2. Although it is 
from a preliminary evaluation, the accuracy range is reasonable high. 

For the evaluation of our integration approach to protein name recognition method, we 
considered the Protein Active Site Template Acquisition (PASTA)[19] data. PASTA contains 61 
abstracts from the Journal of Molecular Biology. A three-fold cross validation was performed for 
the evaluation. The instances tagged as “PROTEIN” were considered as positive data set and the 

Individual Keyphrase Quality Topic Coverage
Average Std Rank Average Std Rank

Author Assigned 5.8 1.7 10 5.9 1.2 7.4
Corpus Dependent
(Domain Specific) 4.9 1.2 9 6.6 0.6 9.4

Corpus Dependent
(Domain Unspecific) 4.7 1.3 7.8 6.4 0.7 8.4

TF-IDF 4.6 1.3 6.9 5.9 1.2 7.4
TF 4.1 1.5 5.4 5.2 1.1 5.2
Co-Occurrence 4.5 1.4 6.8 5.8 1.3 7.4

Table 1. Results based on human evaluation of key phrases extracted from 20 documents. Std 
denotes standard deviation. All the scores are within a scale of 0 to 10.

Entity Precision Recall F Measure
Disease 77.73 73.04 75.31

Genus 92.06 87.63 89.79Bacteria
Species 94.35 92.59 93.46

Table 2: The performance evaluation of Named Entity Recognition Model for disease and 
bacterium.



instances tagged as “SPECIES”, “RESIDUE”, “REGION”, “NON_PROTEIN” were considered 
as negative data set. Initially, the untagged data was passed through the collection of predictors. 
The tagged outputs of the individual predictors were then extracted, post-processed and compared 
with the actual predictions. The performance was measured over predictions that were obtained 
by combining voting and the meta-learning. More specifically, given five predictions from 
methods listed in Table 3, we consider cases when three or more methods agree on their 
predictions. When all five agree, we take the prediction. For other cases, we get the prediction 
from meta-classifier. The meta-classifier implements Naïve Bayes with kernel density estimation. 
As illustrated in Table 4, our NER model shows significantly improved precision level at the 
expense of small decrease in recall level. This result empirically confirms the efficacy of our 
model. In future we intend to add additional filtering criteria using lexicons and rules thereby 
further increasing the precision and recall of our system.

5. Conclusion
The amount of text documents available for BKC is enormous. However, without powerful text 
processing technologies suitable for our interest, invaluable information hidden in the 
unstructured texts will be easily wasted. This paper describes our initial efforts toward the 
construction of systematic and highly precise system for identifying relevant text and phrases 
from free-texts. We particularly introduced the keyword extraction and the named entity 
recognition systems developed for the Bio-E of the BKC.

We demonstrated an impressive performance of our corpus dependent (and domain specific) 
keyword extraction method through meticulously designed manual evaluation processes. Also, 
we showed that our corpus independent (co occurrence-based) method yields highly competitive 
results compared to other corpus dependent methods. Considering the difficulty of compiling a 

ABNER YAGI KEX LingPipe NLProt Meta-learning
Precision 25.656% 32.935% 15.255% 29.211% 40.003% 82.174%
Recall 58.872% 61.709% 63.963% 71.817% 55.699% 47.002%

Table 4: Performance evaluation of the combined protein Named Entity Recognition Model 
(Meta-learning & Voting) 

Tool Description
ABNER 
and 
YAGI

ABNER and YAGI are biomedical Named Entity Recognizers [1]based on CRF. Their 
implementation mainly considers the case of CRF that uses the first order Markov independence 
assumption with Orthographic feature functions and Semantic feature functions.

KEX KEX is a protein name annotation tool based on PROtein Proper-noun Extraction Rules 
(PROPER)[2]. Protein name extraction is done using surface clue on character string. This system 
uses the characteristics of proper noun description to extract protein names.

NLProt NLProt is a protein Named Entity Recognition system [3, 4]based on SVM. It utilizes the word name, 
position of the word and the local context of the word in scientific literature to extract protein names.

LingPipe LingPipe [6]is a collection of tools that could be used for performing linguistic analysis. Named 
Entity Recognition is a module in LingPipe that employees a generative statistical model based tag 
bigrams and word trigrams to tag protein names.

Table 3: Five existing Named Entity Recognition Methods for Protein names.



training corpus for a certain domain in practice, this result highlights its paramount practical 
value. 

With the absence of any available named entity recognition tool for disease and bacterium, we 
developed one such system based on the state-of-the-art probabilistic technique, and showed very 
promising results from our preliminary assessment. With the intention of improving precision 
level, our hybrid system for protein named entity recognition embraces ensemble classification 
framework in two layers: voting and meta-learning. Our cross validation result illustrates the 
significantly boosted precision level. Considering the volume of documents that are, or will be 
stored under the Bio-E system, high precision level in identifying relevant terms in domains of 
interest is a very precious asset.

Our efforts introduced in this paper are still in their preliminary stage. There are still rooms for 
our models to be improved in many directions. For example, we need more systematic way of 
incorporating domain knowledge into the corpus dependent keyword extraction system, and our 
CRF model for named entity recognition needs to be further refined to be more sensitive to rare 
but important cases.
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W-7405-ENG-48. 
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